

Joint IEEE PES/PELS Society Distinguished Lecturer Program Perth, WA

Resilience of Net-Zero Power Systems – Modelling and Control Challenges

Due to the evident climate change and environmental pressures the future power/energy systems will have to operate, sooner rather than later, in a net-zero environment, i.e., any carbon emissions created will have to be balanced (cancelled out) by taking the same amount of carbon out of the atmosphere, so that the amount of carbon emissions added to the etmosphere should not be more than the amount taken away. This will manifest in: by mix, at least during the transition period, of wide range of electricity generating technologies including conventional hydro, reducing but still present thermal, possibly increasing nuclear and even higher and accelerated connection of power electronic interfaced stochastic and intermittent renewable (wind and PV) generation; blurred boundaries between transmission and distribution system; responsive and highly flexible, typically power electronics interfaced, demand and storage trechnologied with significant temporal and spatial uncertainty; proliferation of power electronics (HVDC, FACTS devices and new types of load devices); significantly higher reliance on the use of legacy and measurement data including global (Wide Area Monitoring) signals for system identification, characterization and control and Information and Communication Technology embedded within the power system network and its components; and ever increasing emphasis on considering the "whole system", not only comprising different energy vectors, but also ICT, traffic, water and social systems, to ensure energy supply security and efficiency. The key characteristics of such a complex system, if only a few are to be picked, would certainly be proliferentiation of power electronic devices in different shapes and forms and for different purposes, increased uncertainities in system operation and parameters and much largerer reliance on the use of measurement and other data collected. This will increase controllability and observability of the system but may as a trade off result in different/unexpected dynamic behaviour of the system and possibly, under some circumstances, deterioration of some aspects of its performance.

The aim of this presentation is to introduce the power system environment, both its characteristics and challenges, within wich further integration of PV generation will be happening. The first part of the presentation will briefly introduce some of the key characteristics of future net-zero power systems and summarise the key challenges associated with ensuring resilience (the ability to withstand low-frequency high-impact incidents efficiently while ensuring the least possible interruption in the supply of electricity) of such systems. Following this examples of the latest research results in the areas of probabilistic stability studies of uncertain systems, data analytics, risk assessment and complex system analysis, all constituent parts of assessment of resilience of net-zero power systems, will be discussed.

Joint IEEE PES/PELS Society Distinguished Lecturer Program Perth, WA

Biography of the presenter:

Jovica V Milanović received Dipl.Ing. and M.Sc. degrees from the University of Belgrade, Yugoslavia, Ph.D. degree from the University of Newcastle, Australia, and D.Sc. degree from The University of Manchester, UK. Prior to joining The University of Manchester, UK, in 1998, he worked with "Energoproject", Engineering and Consulting Co. and the University of Belgrade in Yugoslavia, and the Universities of Newcastle and Tasmania in Australia.

Currently, he is a Professor of Electrical Power Engineering at The University of Manchester, UK, and Visiting Professor at the University of Novi Sad and the

University of Belgrade, Serbia. He was chairman of 5 international conferences, editor or member of editorial/technical boards of 70+ international journals and conferences, research project assessor or panel member for numerous international government research funding councils, member of 9 (convenor of 3) past or current IEEE/CIGRE/CIRED WG and consultant or member of advisory boards for several international companies. Professor Milanovic participated in or lead numerous research projects with total value of more than £80 million, published about 600 research papers and reports, gave over 30 key-note speeches at international conferences and presented over 150 courses/tutorials and lectures to industry and academia around the world.

Professor Milanovic is a Chartered Engineer in the UK, Foreign member of the Serbian Academy of Engineering Sciences, Fellow of the IET, Fellow of the IEEE, Distinguished IEEE PES Lecturer, member of the IEEE PES Industry Technical Support Leadership Committee, member of the IEEE PES Long Range Planning Committee, member of the IEEE Fellows Committee and Editor-in-Chief of IEEE Transactions on Power Systems. He was a member of the IEEE PES Governing Board as Regional Representative for Europe, Middle East and Africa for six years, member and vice-chair of IEEE PES Fellows Evaluation Committee and member and past-Chair of the IEEE Herman Halperin Transmission and Distribution Award Committee.